Status of COPS

From Scientific Preparation Towards Operation

Andreas Behrendt, Volker Wulfmeyer, Christoph Kottmeier, Ulrich Corsmeier, George Craig, Martin Hagen, Susanne Crewell, Hans-Stefan Bauer

+ ISSC

+ Participants of 1st and 2nd COPS Workshop

Updated version, 10 May 2006

COPS

Erfurt

Jena.

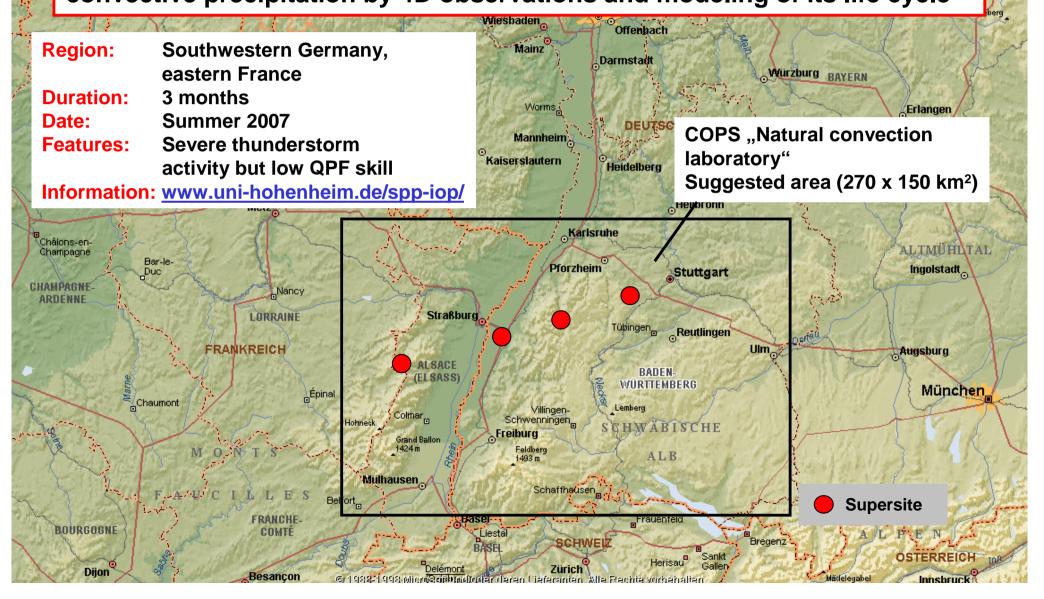
cipitationis titativae Praedictio

Gera

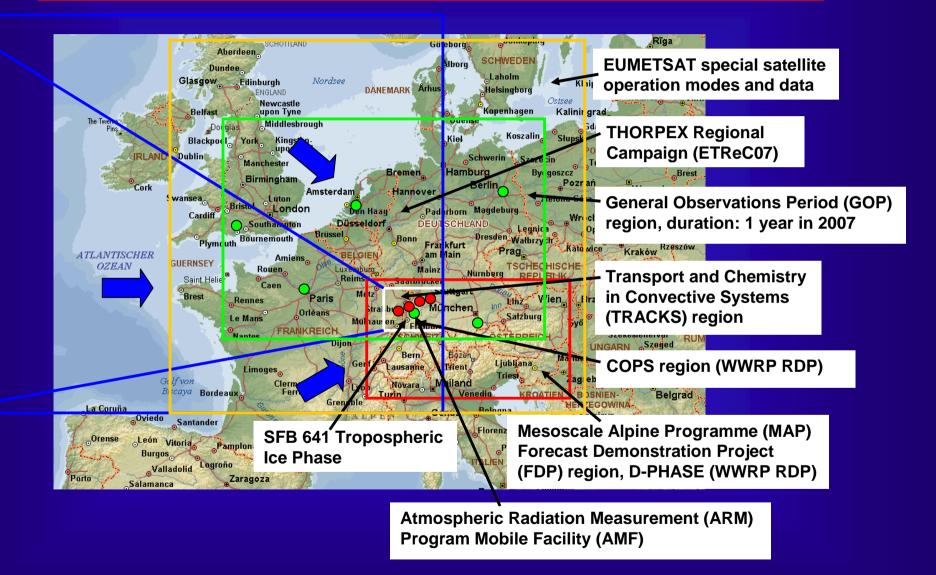
A field experiment within the German QPF Program PQP Goal: Advance the quality of forecasts of orographically-induced convective precipitation by 4D observations and modeling of its life cycle

Leverkusen

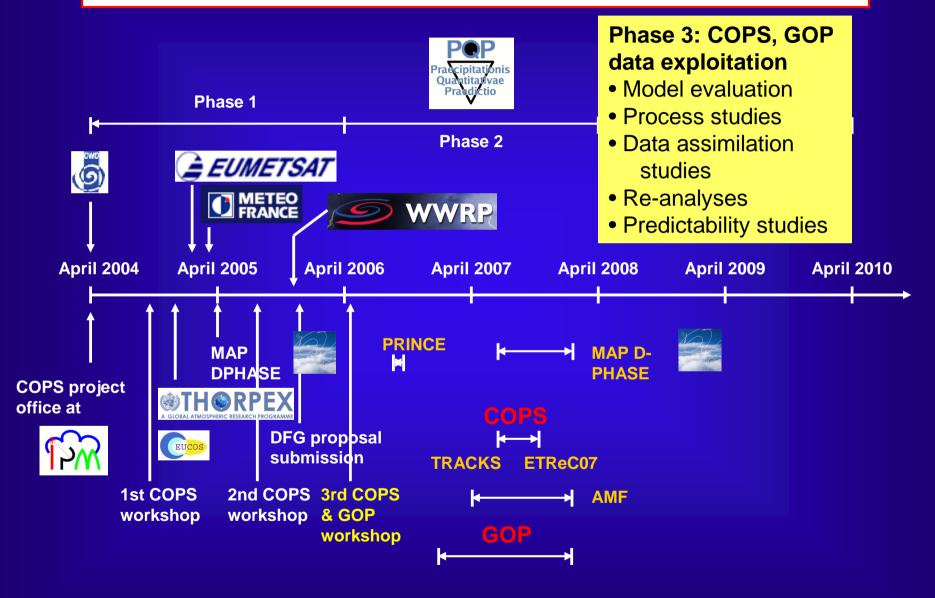
Reraisch

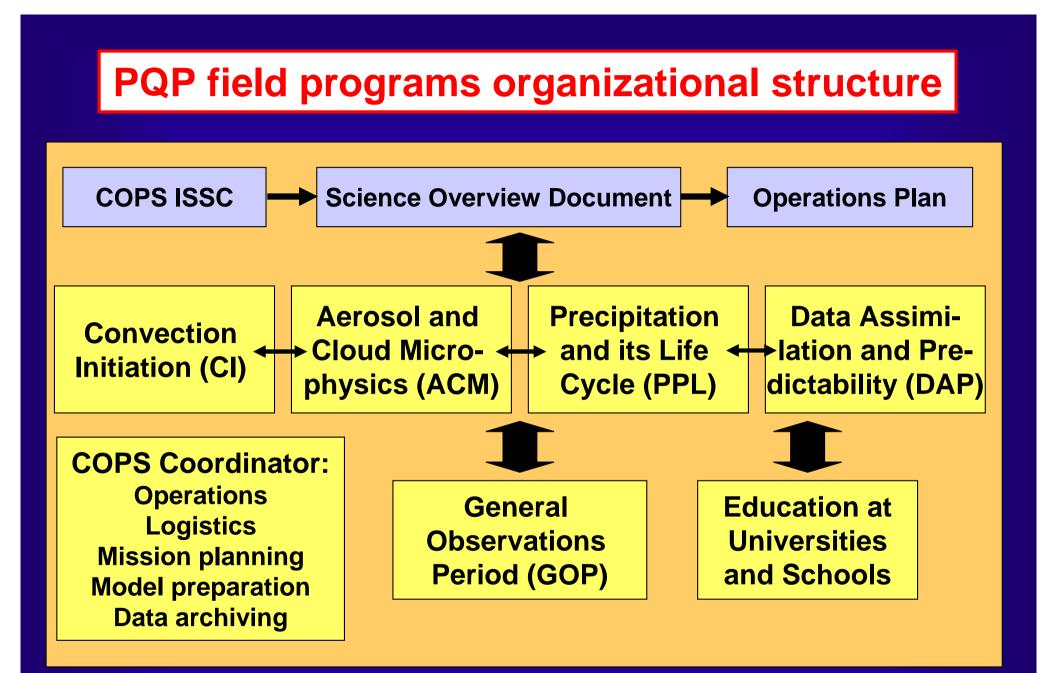

Köln

FLÄMISCHE REGION


Brüsse

Charler


Hasselt



International Collaboration: European Summer Experiments 2007

Timeline

COPS science hypotheses

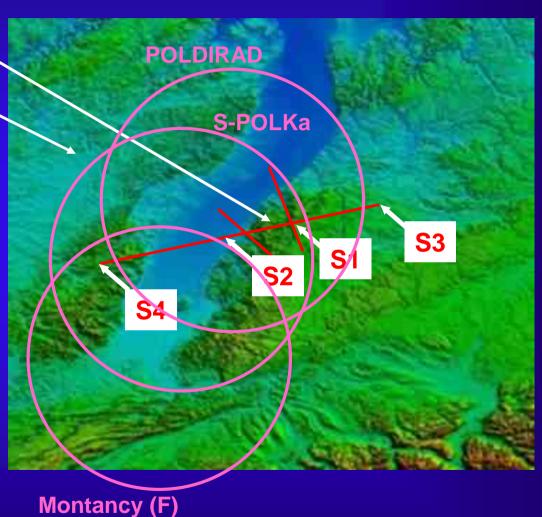
- Upper tropospheric features play a significant but not decisive role for convectivescale QPF in moderate orographic terrain. ⇒ ETReC07, CI, GOP, DAP
- Location and timing of CI depends critically on the structure of the humidity field in the planetary boundary layer
- Novel instrumentation during COPS can be designed so that parameterizations of sub-grid scale processes in complex terrain can be improved (ALL)
- Real-time data assimilation of key prognostic variables such as water vapor and dynamics is routinely possible and leads to a significant better short-range QPF (CI, DAP, GOP)

This shall be achieved by combining:

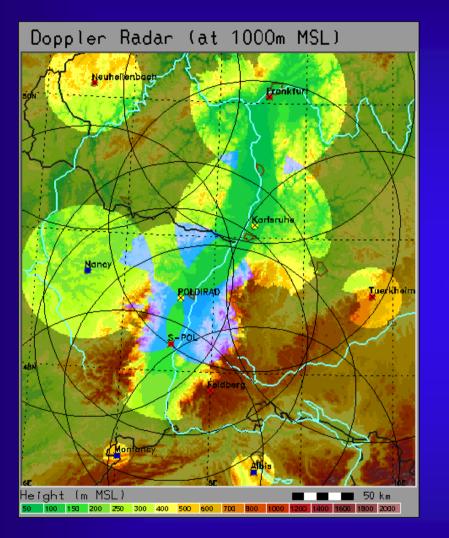
- 1) A synergy of unique in-situ and remote sensing instruments,
- 2) Advanced high-resolution models optimized for operation in complex terrain,3) Data assimilation and ensemble prediction systems.

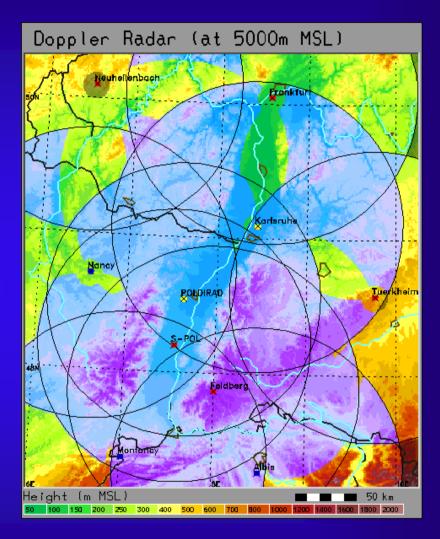
Observation strategy

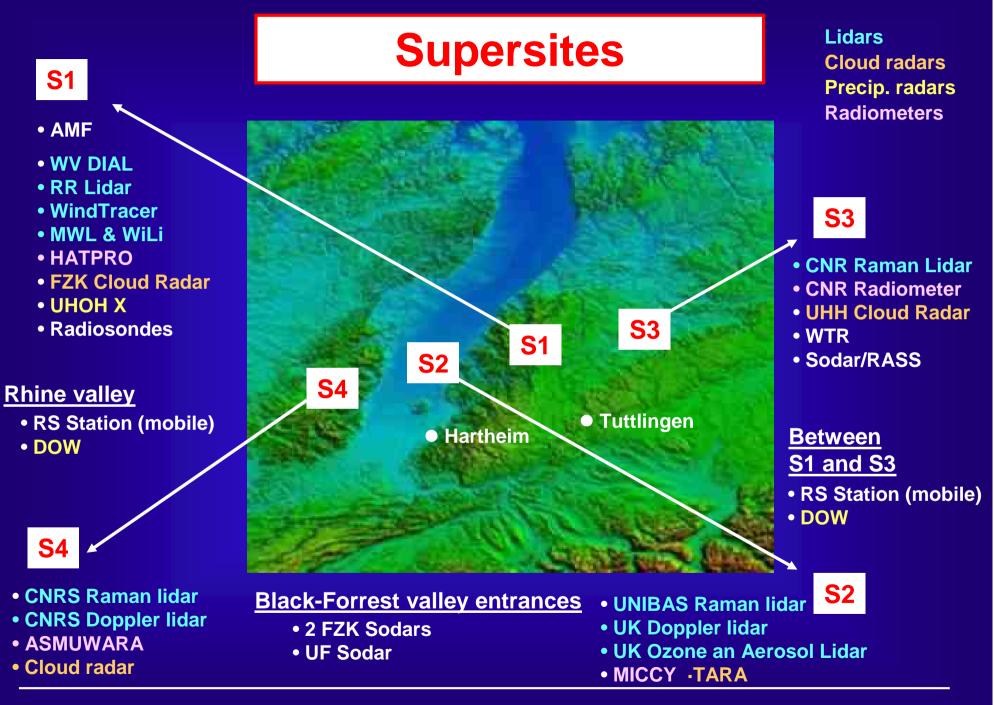
Transect with supersites


Optimization of radar coverage Large-scale and mesoscale observations provided by DLR Falcon aircraft.

Regional observations between supersites performed by Do-128, Safire F20, and UK Cessna aircrafts.




Cloud microphysics with UK BAE 146.



Radar Coverage

Radar coverage considering orographic shielding. Bright colors: Doppler radar coverage; blue colors multiple-Doppler analysis is possible at 1000 m and 5000 m MSL

Zoom in view • Energy balance stations in Northern Black Forest • Flux stations (turb. towers) Radiation turbulence clusters Soil moisture sensors • Mesonet Prine Valley Radiosonde stations (RS) • Sodars • MRRs • GPS **UHOH WV DIAL S1 UHOH RRL** Hornisgrinde Windtracer **UHOH X-band** FZK cloud radar **S2** Kinzig Valler AMF AMF HATPRO + 90/150 GHz 0 km MWL & WiLi (incl. RS)

The Black Forest AMF Site

AMF Core instruments	
SKY Rads	Radiometer
SKY IRT	IR Therm
GRD Rads	Radiometer
GRD IRT	IR Therm
MFRSR	Radiometer
SMET WD	Anemometer
SMET T/RH	Temp/humid
SMET BAR	Barometer
SMETORG(815)	Rain gage
PWD	Present Weather Detector
TSI	Camera
ECOR	Eddy Correlation
BBSS Digi/Ant	Up air sonde
CEIL	Lidar
MPL	Lidar
MWR	Radiometer
MWRP	Radiometer
NFOV	Radiometer
AERI	Interferometer
WACR (94Ghz)	Radar
CIMEL	Photometer
RWP (1290Mhz)	Radar Wind Profiler
CIMEL	Sun Photometer

	AOS Core Instruments	Aerosols
1000	TSI neph x 2 Dry	TSI 3563 Nephelometer at low RH
	TSI neph + humidograph	Nephelometer + humidograph system for scanning RH
计算法 计算机	RR PSAP	Radiance Research 3 wavelength Particle soot absorption photometer
A REAL PROPERTY OF	CPC (or CNC?) CPC=CNC	TSI 3010 Condensation nuclei counter
	CCNC	DMT Cloud condensation nuclei counter

OP Workshop, 10 April 2006

The Black Forest AMF Site

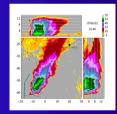
- + 14 channel scanning microwave radiometer HATPRO (LMU)
- + 90/150 GHz radiometer (LMU)
- Online implementation for Integrated Profiling Technique (IPT) Löhnert et al. 2004 & COST 720:
 - Profiles for T and q, LWP, IWV, r_{eff}
 - Online model evaluation for AMF and Cloudnet stations
- + Micro rain radar (UHH)
- + Multi-wavelength lidar (IfT)
- + Doppler lidar (IfT)
- + Scanning water vapor DIAL (UHOH)
- + Scanning rotational Raman lidar (UHOH)
- + Scanning Doppler lidar (FZK)
- + 36-GHz scanning cloud radar (FZK)

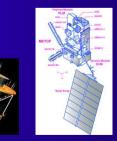
DFG Budget and its distribution

- COPS/GOP: 2 Mio€, separate from general PQP budget
- Allocated for transportation, operation, staff for operation (largely internal funding!), data archiving, workshops, coordination, logistics, data management, educational component
- >2 Mio€ additional internal funding of COPS participants

Data exploitation in phase 3 of PQP

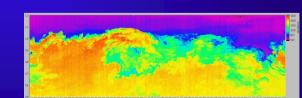
German Research Observation Systems Funded for COPS (part 1)


- Radiation-turbulence-stations & towers (energy balance stations, scintillometers,...)
- Soil moisture sensors
- Weather stations
- Rain gauges, disdrometer, tipping buckets
- GPS receivers
- Radiosonde stations, drop-up sondes


Continuously operating, fixed-mode remote sensing instruments

- Karlsruhe Radar
- Ceilometers
- FTIR & MW Radiometers
- Micro-rain-radars

Additional satellite products for COPS (e.g., MSG rapid scans)

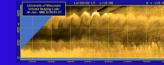


German Research Observation Systems Funded for COPS (Part 2)

... mobile, adaptive-mode-scanning, and partly not operated continuously

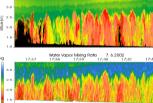
- DLR Falcon with H2O DIAL, Doppler Lidar, dropsondes
- DO 128
- Scanning H2O DIAL
- Scanning RR Temperature Lidar
- Scanning Doppler Lidars WindTracer & WiLi
- Multi-Wavelength Raman Lidar IfT
- FZK Cloud Radar
- UHH Cloud Radar
- POLDIRAD

2 FZK Sodars, 1 UF Sodar
UB Sodar/RASS
FZK WTR



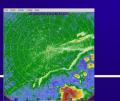
Scanning MW Radiometers HATPRO & MICCY

The German instruments form the basis for additional international participation...



Foreign Research Observation Systems Requested for COPS

France


- Falcon 20 aircraft with WV DIAL, dropsondes, turbulence instr.
- Polarization-Doppler Radar
- Raman lidar
- X-band radar
- UHF BL radar
- GPS Receivers

US

- ARM Mobile Facility
- SPolKa
- DOWs
- ...?

- CNR Lidars
- CNR Radiometer

<u>Austria</u> • U. Vienna instruments

UK: CATICT

- Cessna aircraft
- BAE 146 aircraft
- 3 Doppler lidars
- Ozone & Aerosol lidar
- Wind profiler
- 3 sodars
- 3 radiosonde stations
- Tether balloon with sondes
- New flux masts
- 5 Energy balance st.
- Aerosol instruments
- Gas Chromatographs
- The Netherlands
- TARA

Envisioned airborne platforms during COPS

MPIC Learjet (max. 13 km): Chemistry + ?

DLR Falcon (6 – 10 km AGL): WV DIAL, Doppler lidar (conical scanning), dropsondes, turb. fluxes

EQ 20100-

SAFIRE F20 (6 – 10 km AGL): VW DIAL/RaLi?, dropsondes, p, T, q, u, v, w

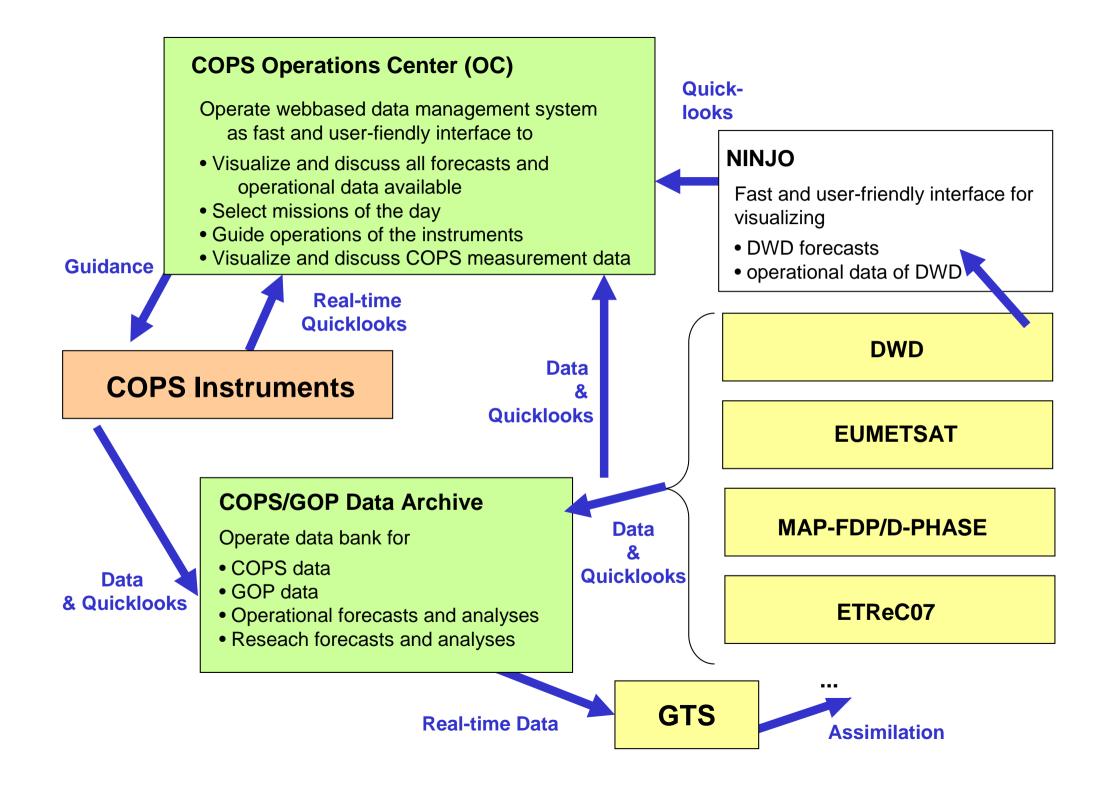
BAE 146 (max. 4 km), aerosol + cloud mircophysics instrumentation

★ Do128 (0.3 – 3 km AGL): T surface, upwelling & downwelling radiation and turb. fluxes

★ UK Cessna (PBL) T, WV, wind, aerosols

FZJ Zeppelin NT (max. 2 km): Chemistry + ?

Flight coordination & communication with Air Safety Control: Heinz Finkenzeller, DLR


DLR Falcon
30 allocation days (weekends do not count unless IOP)
45 flight hours
+ additional operation by EUFAR?

Reservation: 11 June: implementation of instruments 18 June - 29 July: COPS deployment

DO128

35 allocation days100 flight hours+ additional operation by EUFAR?

Operations Plan

- Descriptions of the COPS missions with typical meteorological situations,
- Description of all instruments with measured parameters, operation modes, logistical requirements (for the proposed German instruments, this information has already been collected),
- Briefing and debriefing procedures,
- Communication plan for sites, operation center, airbase, aircraft, and scientists,
- Communication plan for data flow (operational and COPS-specific data),
- Forecasting system, responsible forecasters,
- Air traffic control issues,
- Alerting procedures for the investigators in the field,
- Names and responsibilities of operation manager, missions leaders, supersite managers,
- Details of the Operation Center Data Management System,
- Procedures for decision making.

Aims of this workshop:

Which setup for ground-based instrumentation?Missions for airplanes & flexible instruments?Data and information flow?Responsibilities?